

Components & System Solutions

Smart sensor emulation for FPGA based systems

electronics4U

TRS-STAR Tec Bytes

electronics4U

With the TEC BYTES webinars, TRS-STAR offers you bite-sized technical tidbits.

TRS-STAR customers are cordially invited to this free training opportunity.

https://www.trs-star.com/en/mediathek/webinars

On-Demand Webinars

electronics4U

On-Demand Webinars require registration Tec Bytes on YouTube does not require registration

On-Demand Webinars

Introduction to FPGA design with Efinix

Presenter: FH-Prof. DI Dr. Markus Pfaff (CEO & Co-Founder P2L2),

Andreas Schwarztrauber (CEO TRS-STAR)

Language: English

PDF Flyer

Register

Tec Bytes on Youtube

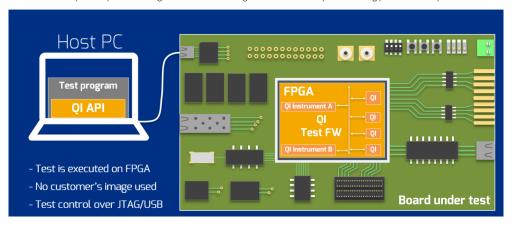
Design Flow (Tutorial)

Presenter: Harald Werner Duration: 0:21:56 h Language: English

Upcoming Webinars in September (1)

TCS-STAC

electronics4U

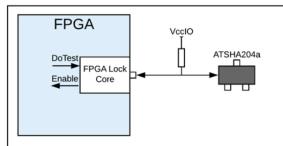

Introduction to Quick Instruments

Quick Instruments

Test framework for FPGA board quality control

Quick Instruments (QI) is a test & measurement framework that loads itself into on-board FPGA for test, validation or programming purposes. The role of instruments is to verify PCBA hardware infrastructure: on-board interconnections and communication with peripheral components. In this way, every PCBA board can be checked for defects and stability issues. All instruments are pre-compiled for a target board and are being executed from test platform using predefined templates.

Upcoming Webinars in September (2)

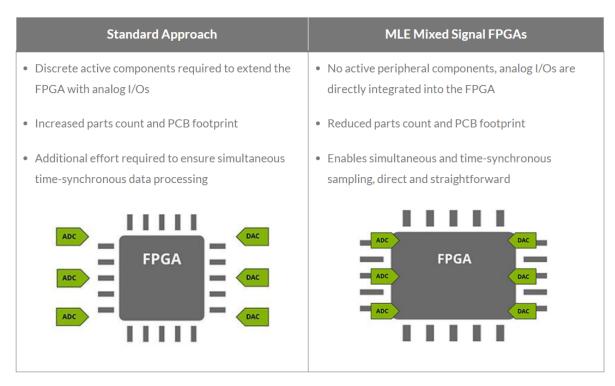


electronics4U

Prevent Overbuilding and secure your design with the FPGA Lock IP

The FPGA Lock is a small FPGA IP core that prevents overbuilding and cloning of your FPGA-based systems and consequently protects your revenue. It can also be used to guarantee hardware integrity in Safety Critical, Medical or Military/Defence applications.

- Test triggered, core Reads device ID.
- Core sends 256 bit random challenge.
- 3. ATSHA204a perfoms SHA256 hash on the challenge, its ID and a programmed 256 bit secret key. The hash result is returned to the core.
- 4. The core also performs the hash on the challenge, device ID and secret key (that it knows).
- challenge, device to and secret key (that it knows).


 If the two sets of hash results match then a device with the correctly programmed secret key is present, FPGA functionality is enabled.

Upcoming Webinars in September (3)

electronics4U

Implementing ADCs and DACs in digital FPGAs

Smarte Sensor Emulation für FPGA basierte Systeme

electronics4U

SmartWave

Communication (I2C, SPI, UART, GPIOs)

Emulation

(corner cases)

Demos

FPGA + Sensors

electronics4U

Timeline:

- NOW T*Square T20-100 Education Board*
- NOW T*Square T20-144 Education Board
- 11/24 T*Square Ti60-256 Education Board
 *) with 16 Mbit integrated SPI-Flash
- Rapid Prototyping
- Measure power consumption on all voltage rails
- RISC-V (Sapphire) evaluation
- UART to RISC-V
- Evaluation of ADCs/DACs in an digital FPGA
- Break-Out-On-Board-Programmer

Be creative with T*Square Boards

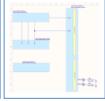
electronics4U

https://www.trs-star-shop.com/index.php/en/fpga-en/evalboards-en/product/t-square-t20-144-education-board

TCS-STAC

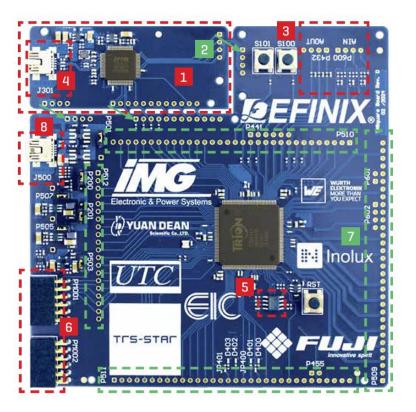
FPGA

Procuct brief

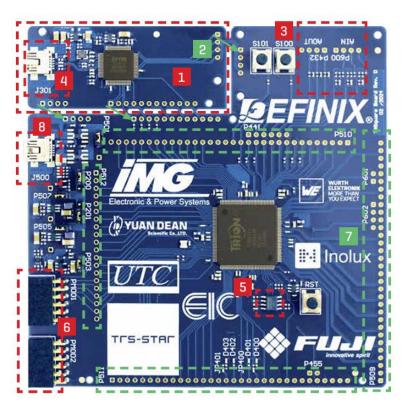


Product Documentation

Reference Design



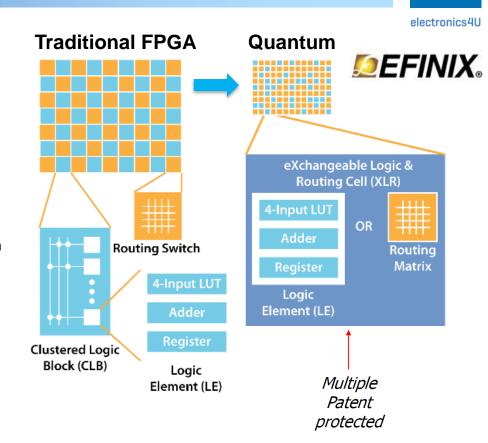
Possible Breakout FTDI for UART 1/2 USB JTAG Programming **UART Communication** 3.3V suppl GPIO Connector Bank 1 GPIO / PMOD SPI 16Mbit **EFINIX** Flash **FPGA** Trion/Titanium CLK OSC 10 MHz **GPIO** 2.5V or 3.3V supplied 00 1.2V 2.5V 3.3V USB 2.D Opt. PWR IN DC/DC Switch LDO → 5V to 1.2V 5V to 3.3V PG EN DC/DC Connector Bank 3 -3CH 5V to 2.5V **Power Supply** ADC 2.5V 3CH DAC Connector Bank 4 - 2.5V or 3.3V supplied Differential I/Os


electronics4U

- 1 Break-Out-Board with Programmer Break-Out to use it for your own boards
- There is still the option to continue to use the programmer in combination with the T*Square Education Board
- 3 External R-C-circuitry allows implementation of ADCs and DACs in a digital FPGA, using LVDS-Buffers for sigma-delta-ADCs
- 4 A UART allows communication with the RISC-V Saphire Soft-Core that can be implemented in the FPGA Core fabric

- The PCB allows to mount either 100-pin LQFP (with integrated SPI-Flash) or 144-pin LQFP (with external SPI-Flash)
- 6 2 x PMOD interfaces allow attaching PMOD daughter cards
- Post connectors (included, but not mounted) can be mounted on the top or bottom of the T*Square education board to connect your own basedboards or daugther cards
- 8 Alternative USB-Connector for Board Power Supply, when Break-Out-Programmer (1) is removed

Disruptive FPGA technology



Quantum FPGA Technology from Efinix

XLR eXchangeable Logic or Routing Cell (the decision is made at compile time)

Resulting in Advantages over traditional FPGAs

- Optimal resource usage -> smaller dies
 - ✓ Cost benefit
 - ✓ Small packages -> less PCB real estate -> compact systems
 - Less transistors, shorter routing -> less Power Consumption
 -> less cost
- 7 layers of metal vs.12+ layers -> reduced NRE cost
 - Cost benefit, more flexibility to adjust to customer needs
- Single architecture scalable to 1 Mio+ LEs
- Standard process and Silicon process agnostic
 - ✓ Could be transferred to other fabs
 - ✓ Short Leadtimes, even during allocation!

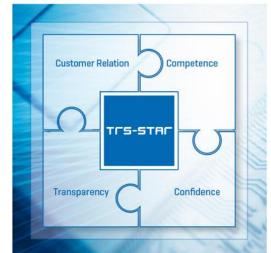
Disruptive FPGA technology

electronics4U

https://www.trs-star.com/en/mediathek/webinars

Introduction to FPGA design with Efinix

Presenter: FH-Prof. DI Dr. Markus Pfaff (CEO & Co-Founder P2L2),


Andreas Schwarztrauber (CEO TRS-STAR)

Language: English

electronics4U

www.trs-star.com

TRS-STAR GmbH

Headquarters | Sales · Marketing

Sales Europe

Werner-von-Siemens-Str. 1

76297 Stutensee

T +49 7249 95222-0

info@trs-star.com

Logistics · Sales · Engineering

Schraderstraße 44 67227 Frankenthal T +49 6233 347-0

info@trs-star.com

Switzerland

Hofstrasse 87

8620 Wetzikon (Zürich)

T +41 76 3778343

ceko@trs-star.com

France

14 allée de la Vaudonnière

91370 Verrières le Buisson

T +33 614 932518

commelin@trs-star.com

UK

15, Oakley Close, Addlestone,

Surrey. KT15 2LT

T +44 1932 483040

bonnett@trs-star.com

Romania

bd Ion Mihalache 319, bl 21, ap 15

011184 Bucharest 1

T +40 72 3569406

balanescu@trs-star.com